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This Tutorial explains the concept behind, and the implementation of Monte Carlo
Simulations (MCS) in R. To implement MCS, we will make use of one of the following
two tools: for-loops or the map-functions from the package purrr. Therefore, the tutorial
also contains a general methodological section on these two approaches that you might
read independently of the particular applications to MCS below. If you want to read
a bit more about the topic of the tutorial, you may have a look at chapter 21 of R for
Data Science.

This tutorial assumes you are using a typical directory structure as described in the
respective tutorial. During this tutorial we will use the following packages:

library(here)
library(tidyr)
library(data.table)
library(dplyr)
library(ggplot2)
library(scales)
library(purrr)
library(icaeDesign)

1 The technical part: doing iteration tasks

Whenever you are doing a certain task more than twice you should immediately become
suspicious and ask yourself whether you can automate the task. We already discussed the

https://purrr.tidyverse.org/
https://r4ds.had.co.nz/iteration.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html


Tutorial: Monte Carlo Simulations 2

reasons behind this rationale and introduced one important way to achieve automation:
the use of functions.

Here we talk about a general approach that complements the use of functions when it
comes to automation: the idea of iteration.

Here we focus on two alternative ways of how to implement iterations in R: using for-
loops, or a map-function from the package purrr. The latter option is clearer and more
concise, the former is more flexible and intuitive. So, its generally good to know about
both ways and then choose the approach that you find more appealing for the case at
hand.

As you will see below, the two iteration concepts and functions and complements, not
substitutes: often, especially in the context of MCS, you will write functions that you
then combine with the iteration tools described below.

1.1 For loops

The idea of a for-loop is to ‘loop over’ an object, an do something for (or on) every
element in this object.

In general, every for-loop (should) consist of three parts:

1. The output container
2. The looping sequence
3. The action body

Below we is an example loop that loops through a list with three vectors as elements
elements, and computes the mean for each element of the list. Before we inspect the loop
as such, this is the list we are looping over:

base_list <- list(
"element_1" = c(1, 4, 5, 6),
"element_2" = c(9, 2, 2, 8),
"element_3" = c(4, 3, 0, 7)

)

And this is how the loop looks like:

result <- rep(NA, length(base_list)) # The output container
for (i in seq_along(base_list)) { # The looping sequence

result[[i]] <- mean(base_list[[i]]) # The action body
}

The first part is actually located outside the for-loop in a strict sense. But for the sake
of efficiency, it is very important that you prepare a vector into which you can save the
results of your loop. The vector should be of the same length as your loop will have
iterations, and it is a good idea to use a vector full of NAs that are then replaced during
the actual loop. Thus, the length of the output contains should equal the length of the
object over which you are looping.
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The second part is the looping sequence, and it determines the number of times your
loop will iterate the task that is specified in the action body below. In the case above,
we want to compute the mean for each element of base_list. In other words: we are
looping over each element of base_list and the loop will comprise of three iterations.

The looping sequence always starts with the keyword for and an opening bracket. Then
you specify a keyword that can be an (almost) arbitrary word. But usually, one uses a
single letter, most commonly the letter ‘i’. This letter will take a different value during each
iteration of the loop. The value it takes is specified by the vector that comes after the next
keyword in: in the case above, this sequence is created by seq_along(base_list):

seq_along(base_list)

## [1] 1 2 3

As you can see it is an index vector, i.e. a vector that starts with 1, only contains
subsequent integers, and has so many elements as the object that has been passed as an
argument to seq_along().

In the case above, this means that in the first iteration of the loop, i takes the value 1.
In the second iteration it takes the value 2. And in the third and last iteration it takes
the value 3. You could make this visible by writing a loop like this:

for (i in seq_along(base_list)){
print(i)

}

## [1] 1
## [1] 2
## [1] 3

In principle, the keyword of your loop can take arbitrary values. For instance you could
also loop over the names of base_list:

for (i in names(base_list)){
print(i)

}

## [1] "element_1"
## [1] "element_2"
## [1] "element_3"

But this is usually not a very good idea. It is usually best to loop over an index vector
of the main object of interest.

The third part of the loop is the action body. This is where the interesting code resides
in, and where you determine what should be done during each iteration of the loop. Here,
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the code usually produces one result per iteration that should be allocated to the output
contained created in the first step.

In the present case, we wanted to compute the mean for each element of the list base_list.
Thus, our action body only consists of a call of the function mean, and then saves the
result in the initial output container. If we then inspect the output container, we see
that all the NAs were replaced by the means of the respective elements of base_list:

result <- rep(NA, length(base_list)) # The output container
print(result) # Only contains NAs

## [1] NA NA NA

for (i in seq_along(base_list)) { # The looping sequence
result[[i]] <- mean(base_list[[i]]) # The action body

}
print(result) # NAs were replaced by the means

## [1] 4.00 5.25 3.50

While the loop above was very simple, the basic concept is extremely powerful: the
action body of a loop can be of arbitrary complexity, making for loops a very powerful
programming tool. But caution: very complex computations take time, and iterating
them many times using a for-loop can take a lot of time.

Here are some general tips for developing for-loops:

• Before writing a long loop, write a short loop that only has two or three iterations.
Once you are sure that this reduced loop does what it was meant to be you can
extend the looping sequence.

• When developing a loop, make sure that everything goes as planned by adding
many print() statements into the action body; this is especially useful for your
looping keyword i since this makes explicit what you are actually looping over.

• Always loop over the indices of the object of interest, never over its elements. If
you just want to iterate a task, you can loop over the indices of a simple sequence
of the desired length. In any case, the looping sequence should be built by using
seq_along() or seq_len().

Before proceeding with the tutorial, it might be a good idea to practice. Here are some
suggestions for exercises (you find possible solutions here):

1. Write a for-loop that loops over the vector c(1,2,3,4,5) and computes the square
root for each element.

2. Write a for loop that draws 10 numbers from a normal distribution with mean 0
and standard deviation 1. You can get a single draw by calling rnorm(1):

rnorm(1)
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## [1] 0.09546169

3. Write a for-loop that loops over the columns of the following tibble, and computes
the median of the elements in each column:

ex_tib <- tibble::tibble(
"a" = rnorm(5, mean = 5, sd = 2),
"b" = rpois(5, lambda = 3),
"c" = rcauchy(5, location = 3, scale = 2)

)
ex_tib

## # A tibble: 5 x 3
## a b c
## <dbl> <int> <dbl>
## 1 4.98 1 3.41
## 2 2.26 3 16.4
## 3 3.78 4 1.58
## 4 5.17 3 3.92
## 5 2.35 4 9.80

1.2 The map-functions from the purrr-package

The package purrr provides a number of functions that are designed to facilitate the
development of iteration tasks. To this end, they allow you to, first, think about how to
accomplish what you want to do for a single element of the object of interest and then,
second, simply pass your solution to a function from the map-family and let it take care
of the iteration.

The map-family is made up of five functions, which only differ by the type of output
they produce: map(), which returns output in the form of a list, as well as map_lgl(),
map_int(), map_dbl(), and map_chr(), which return output in the form of an atomic
vector of type logical, integer, double, and character, respectively.

All five functions, however, work very similarly and take the same arguments, which
means: once you understood one of them you understood all of them. All take two
mandatory arguments: .x and .f. The first argument, .x, specifies a vector, and the
second, .f, a function that gets applied to each element of the vector.

Lets consider one of the examples above: take our list base_list and compute the mean
for each of its elements. Since base_list is the object over which we want to iterate
it is passed to the function via the argument .x, and since we want to compute the
mean, we pass the function mean() via the argument .f. In the following case we use
purrr::map(), so the result will be a list:

purrr::map(.x = base_list, .f = mean)

Data Science Using R - Spring Semester 2023
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## $element_1
## [1] 4
##
## $element_2
## [1] 5.25
##
## $element_3
## [1] 3.5

If we would like the result to be, for instance, of type double we simply use
purrr::map_dbl() instead:

purrr::map_dbl(.x = base_list, .f = mean)

## element_1 element_2 element_3
## 4.00 5.25 3.50

Sometimes you want to pass a function with optional arguments to .f. The following
application, for instance, does not compute the mean if there are NAs in the vectors:

input_vec <- list(c(1, 4, NA, 2), c(NA, NA, 3, 0), c(9, 8, 3, 4))
purrr::map_dbl(.x = input_vec, .f = mean)

## [1] NA NA 6

To avoid this we need to set the optional argument na.rm of mean() to TRUE:

purrr::map_dbl(.x = input_vec, .f = ~mean(x = .x, na.rm=TRUE))

## [1] 2.333333 1.500000 6.000000

As you can see we added a ~ in front of the function name and then passed to the first
argument of the function the object over which we want to iterate as .x. Then we can
add additional arguments as desired.

It is now a good idea to practice the use of the map-functions. Note that the exercises
are very similar to the ones from the section on for-loops above. This is because for-loops
and the map-functions are geared to do the same things just in different ways (again, the
solutions can be found here).

4. Compute the square root for each element of the vector c(1,2,3,4,5) by using a
map-function from purrr. In the first case, your solution should take the form of a
list, in the second case an atomic vector of type character.

5. Draw 10 numbers from a normal distribution with mean 2 and standard deviation
4. Again, use a map-function from purrrť and return the result one time
as an atomic vector of typedoubleand one time of typecharacter‘.

6. Computes the median of the elements in each column of the tibble ex_tib as
defined above. The result should come in form of a list.
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2 The applied part: doing Monte Carlo Simulations in R

The basic idea of a MCS is to repeat a particular random process many times. It does
not come to a surprise that this is not difficult to do with the tools we just acquired.

2.1 The overall workflow

Conducting a MCS always involves the following steps:

• Define the random process to be analysed
• Repeat the random process many times
• Summarize the simulation results

Technically, there are two alternative ways of how to implement a MCS in R: using
for-loops, or a map-function from the package purrr, as described above. The latter
option is clearer and more concise, the former is more flexible and intuitive. Below we use
both alternatives, so its your choice of how you are conducting your own experiments.

2.1.1 A simple example

We start with a simple example that does not relate to the topic of sampling. Then we
consider a more complex example and replicate the example from the lecture slides where
we drew a sample from the ball pit.

The first example we consider is a MCS of an unfair coin. Assume we want to throw the
coin many times to figure our the probability for the coin to show ‘head’.

In the first step we need to define the random process. In the present case this is the
process of throwing a coin that shows ‘head’ with a certain probability.1 To this end, we
define a function that does exactly this:

#' Throwing a coin
throw_coin <- function(prob_head){

sample(c("Head", "Tail"), size = 1, prob = c(prob_head, 1-prob_head))
}

In the second case, we repeat the random process. Lets do this 1000 times, assuming
that the probability for our unfair coin to show ‘head’ is set to 80%. Using a for loop
this would look like this:

iterations <- 1000
probability_head <- 0.8
output_container <- rep(NA, iterations)
for (i in seq_len(iterations)){

output_container[i] <- throw_coin(prob_head = probability_head)
}

1In reality such an experiment only makes sense if we do not know this probability, but here we are
dealing with this situation only for the purpose of illustration.
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If we used a map-function we would write the following:

map_output <- map_chr(.x = 1:iterations, ~throw_coin(prob_head = 0.8))

Both approaches accomplish the same thing. We can now summarize or visualize
the results. We could do this by using quantitative indicators, but the most common
and usually most illustrative way is to use a histogram. We can do this by using
ggplot2::ggplot(), we only need to transform our output container into a tibble:

output_tib <- tibble::tibble(map_output)

ggplot(data = output_tib, aes(x=map_output)) +
scale_y_continuous(expand = expansion(add = c(0, 40))) +
labs(y = "Times observed") +
geom_histogram(stat = "count") +
theme_bw() + theme(axis.title.x = element_blank())
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2.1.2 A more complex example from sampling

In this case we want to simulate the act of drawing a sample from an artificial population
of a ball pid.

This time, the first step involves the notion of a population since it represents the drawing
of sample from this population. Thus, in a very first step we need to create such a
population. In our case, this is a ball pid with 5000 balls, 65 per cent of which are white
and 35 per cent of which are grey:

Data Science Using R - Spring Semester 2023
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ball_pid_size <- 5000
ball_pid_share_white <- 0.65
white_balls <- as.integer(ball_pid_share_white*ball_pid_size)
grey_balls <- ball_pid_size - white_balls
ball_pid_colors <- c(rep("white", white_balls), rep("grey", grey_balls))

ball_pid <- tibble::tibble(
id = seq(1, ball_pid_size),
color = sample(ball_pid_colors)

)
head(ball_pid, 4)

## # A tibble: 4 x 2
## id color
## <int> <chr>
## 1 1 white
## 2 2 white
## 3 3 white
## 4 4 grey

Now we can write a function that formalizes the act of drawing a sample from the ball
pid and computing the share of white balls:

#' Function that takes a sample of balls and computes share of white balls
sample_balls <- function(bowl, sample_size, replace_balls=FALSE){

sample_obtained <- sample(x = bowl, size = sample_size, replace = replace_balls)
sum(sample_obtained == "white") / sample_size

}

We now conduct the MCS by iterating the process of drawing such a sample 1000 times.
Suppose we want to use our MCS to study the effect of taking samples of different sizes,
say 20, 50, or 100. Using a for-loop this could look like this:

n_samples <- 1000
results_n20 <- rep(NA, n_samples)
results_n50 <- rep(NA, n_samples)
results_n100 <- rep(NA, n_samples)

for (i in seq_len(n_samples)){
results_n20[i] <- sample_balls(bowl = ball_pid$color, sample_size = 20)
results_n50[i] <- sample_balls(bowl = ball_pid$color, sample_size = 50)
results_n100[i] <- sample_balls(bowl = ball_pid$color, sample_size = 100)

}

result_table <- tibble(
sample_size20 = results_n20,
sample_size50 = results_n50,

Data Science Using R - Spring Semester 2023
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sample_size100 = results_n100
)

A variant with a map-function would look like this:

results_n20_map <- purrr::map_dbl(
.x = 1:n_samples,
.f = ~sample_balls(bowl = ball_pid$color, sample_size = 20))

results_n50_map <- purrr::map_dbl(
.x = 1:n_samples,
.f = ~sample_balls(bowl = ball_pid$color, sample_size = 50))

results_n100_map <- purrr::map_dbl(
.x = 1:n_samples,
.f = ~sample_balls(bowl = ball_pid$color, sample_size = 100))

Should we create a new population for during each iteration?
It depends on the question asked. If you are interested in one particular
population, you should keep this population fixed over all iteration. However,
if you are interested in more general results for a population that itself involves
random noise, it might be appropriate the re-generate the population for each
iteration of your simulation. In the cases considered here, however, we can
treat the population as fixed.

We can now visualize our results using a histogram:

hist_visualization <- result_table %>%
pivot_longer(cols = everything(),

names_to = "Sample size",
values_to = "Share of white balls") %>%

mutate(
`Sample size` = as.integer(

stringr::str_remove_all(`Sample size`, "[ˆ0-9.-]"))
) %>%

ggplot(data = ., aes(x=`Share of white balls`)) +
geom_histogram(binwidth = 0.02, fill="#00395B") +
scale_y_continuous(expand = expansion(add = c(0, 1))) +
scale_x_continuous(labels = percent_format()) +
labs(

x = "Share of white balls",
y = "Number of samples",
title = "True share: 65%") +

geom_vline(xintercept = 0.65) +
facet_wrap(~`Sample size`, scales = "fixed") +
theme_icae() +
theme(
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panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank())
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Of course, we could also illustrate the result quantitatively:

result_table %>%
pivot_longer(cols = everything(),

names_to = "Sample size",
values_to = "Share of white balls") %>%

mutate(
`Sample size` = as.integer(

stringr::str_remove_all(`Sample size`, "[ˆ0-9.-]"))
) %>%

group_by(`Sample size`) %>%
summarise(
`Mean share` = mean(`Share of white balls`),
`Standard deviation` = sd(`Share of white balls`)

)

## # A tibble: 3 x 3
## `Sample size` `Mean share` `Standard deviation`
## <int> <dbl> <dbl>
## 1 20 0.648 0.103
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## 2 50 0.652 0.0696
## 3 100 0.652 0.0463

3 Useful functions in the context of MCS

We end this tutorial by providing an overview over a number of functions that are usually
extremely useful in the context of MCS, or analyzing random processes more generally:

We already encountered the function sample(), which we can use to draw random
samples: as a first argument x it accepts a vector, from which you can then draw random
samples. The second argument, size, controls the size of the sample. You can either
draw random samples with or without replacement by specifying the optional argument
replace, and you can set probabilities to draw a particular element of x by giving a
vector of probabilities via prob.

When you want to simulate random draws from a particular distribution, R comes with
a very handy syntax: different probability distributions all have their own abbrevation
and depending what you want to do with this distribution you just put a letter in from
of this abbrevation. If, for instance, you want to draw a random element from such a
distribution you just add the letter r.

For instance, if you want to simulate a draw from a normal distribution you add r to the
abbrevation of the normal distribution, which is norm:

rnorm(n = 5)

## [1] 0.6737667 1.6776907 -1.2073140 -0.8149929 2.7389545

If you want to draw from an exponential distribution you add r to the abbrevation for
the exponential distribution, which is exp:

rexp(n = 4)

## [1] 2.4415846 0.4656611 1.0354630 1.0316586

In fact, here is an overview over the various prefixes you can use:

• p for ‘‘probability’’, the cumulative distribution function (CDF)
• q for ‘‘quantile’’, the inverse CDF
• d for ‘‘density’’, the density function (PDF)

To get the CDF for a particular quantile of the normal distribution you can do:

pnorm(q = 0.25)

## [1] 0.5987063

Data Science Using R - Spring Semester 2023
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Here you find an overview over the abbrevations for some of the most common distribution,
but its easy to find additional information in the internet as well:

Distribution Kind Abbrevation Parameters
Binomial Discrete binom size, prob
Poisson Discrete pois lambda
Uniform Continuous punif min, max
Normal Continuous norm mean, sd
Exponential Continuous exp rate

Absolutely essential is the function set.seed(). It allows us set a particular value for
the random number generator of R. You can read more about how R actually creates
random numbers using a pseudo random number generator called the Mersenne Twister.
But the general take away is the following: random numbers in R are only ‘pseudo’ in
the sense that whenever the Mersenne Twister starts from the same location it produces
the same random numbers. And set.seed() lets you pick this starting point. This is
important because it makes MCS reproducible.

To illustrate this, consider the function rnorm(), which creates draws from a normal
distribution. If we just call the function the result is always different due to the Mersenne
Twister algorithm:

rnorm(5)

## [1] 0.8517935 0.7283067 1.8753945 -0.6977864 0.5227630

rnorm(5)

## [1] 1.7594220 -1.7835908 0.6939190 0.1842556 0.9887801

But if we set the seed for the Mersenne Twister explicitly, the outcome becomes repro-
ducible:

set.seed(123)
rnorm(5)

## [1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774

set.seed(123)
rnorm(5)

## [1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774

This is extremely useful if we want to keep our results reproducible.
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