Data wrangling: Lecture notes

Claudius Grabner-Radkowitsch
2023-03-09

Contents

1 Packages and data used
2 General remarks

3 Reshaping data from long to wide format
3.1 Wide and long format: definition
3.2 Transforming long data into wide data
3.3 Transforming wide data into long data

4 Chaining wrangling tasks using pipes
5 Creating or manipulating variables
6 Filtering rows

7 Selecting columns

8

9

Merging data sets

Grouping and summarising data

10 A final example

1 Packages and data used

library(dplyr)
library (tidyr)
library(data.table)
library (here)

The data sets used in these notes are available from the course webpage:

o wrangling slides.csv (data_raw)

11

14

16

Lecture notes: Data wrangling I 2

wrangling slides.csv (data_raw_long)
wrangling_slides_gini.csv (gini_red)

wrangling slides_final_expl.csv (data_final_expl)
wrangling slides_gini_grc.csv (swiid_join)

The brackets show the names of the data sets used below

General remarks

If you imported the data from a file, make sure that the import went as expected
Start with a data set that is of the type tibble (use tibble::as_tibble() if
necessary)

Before starting to wrangle, make a note to yourself of how the final data set should
look like;

— Then think about the different steps you need to take to reach this goal;
— Each step should only address one single wrangling challenge

It is often useful to save the wrangling code in one script in which you import raw
data in the beginning and save tidy data in the end
Then you keep data wrangling, visualization, and modlling in separate files

3 Reshaping data from long to wide format

3.1 Wide and long format: definition

There is no strict definition for wide and long data. Rather, the two should be understood
as relative descriptions of data, meaning that it is more straightforward to speak of a
data set that is longer relative to another one, rather than a long data set per se.

Here is an example for a rather long data set:

country year variable value
1: Germany 2017 unemp 3.75
2: Germany 2017 gdp 53071.46
3: Germany 2017 gini 29.40
4: Germany 2018 unemp 3.38
5: Germany 2018 gdp 53486.84
6: Germany 2018 gini 29.60
T7: Greece 2017 unemp 21.49
8: Greece 2017 gdp 28604.86
9: Greece 2017 gini 32.20
10: Greece 2018 unemp 19.29
11: Greece 2018 gdp 29141.17
12: Greece 2018 gini 31.70

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 3

Here, we have one column identifying the variable, the value of which is stored in a
separate column. This means that the data is relatively ‘long’ in the sense of having
many rows. At the same time, it is relatively ‘narrow’ in the sense of not having too
many columns since the variable identifier is kept in a single column.

Contrast this with an example for a rather wide data set, where each variable has its
own column:

country year unemp gdp gini
1: Germany 2017 3.75 53071.46 29.4
2: Germany 2018 3.38 53486.84 29.6
3: Greece 2017 21.49 28604.86 32.2
4: Greece 2018 19.29 29141.17 31.7

Here, we have more columns since the three variables, the unemployment rate and GDP,
have their own columns. In effect, the data set has much more columns, but tends to be
shorter in the sense of having fewer rows.

While the long format is often easier to read and preferable when communicating data to
humans, making data tidy often involves the task of making data ‘longer’.

3.2 Transforming long data into wide data

To make data wider we use the function tidyr: :pivor_wider().

Assume that we start with our long data set introduced above and that this data set is
bound to the name data_raw_long.

dplyr::glimpse(data_raw_long)

Rows: 12

Columns: 4

$ country <chr> "Germany", "Germany", "Germany", "Germany", "Germany", "Germa~
$ year <int> 2017, 2017, 2017, 2018, 2018, 2018, 2017, 2017, 2017, 2018, 2~

$ variable <chr> "unemp", "gdp", "gini", "unemp", "gdp", "gini", "unemp", "gdp~
$ value <dbl> 3.75, 53071.46, 29.40, 3.38, 53486.84, 29.60, 21.49, 28604.86~

We will now use tidyr: :pivor_wider () to make this data set wider. The most important
arguments of this function are as follows:!

e data is the first argument and refers to the name of the data set to be considered

e names_from denotes the column that includes the names of the new columns

e values_from denotes the column that includes the values to be allocated in the
newly created cells

!The function allows for much more finetuning. You might read more about its argument in the help
page of the function or the online documentation.

Data Science Using R - Spring Semester 2023

https://tidyr.tidyverse.org/reference/pivot_wider.html
https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 4

In the present case, the call would look like the following:

data_raw_wide <- tidyr::pivot_wider(
data_raw_long,
"variable",
"value")
data_raw_wide

A tibble: 4 x 5

country year unemp gdp gini
<chr> <int> <dbl> <dbl> <dbl>
1 Germany 2017 3.75 53071. 29.4
2 Germany 2018 3.38 53487. 29.6
3 Greece 2017 21.5 28605. 32.2
4 Greece 2018 19.3 29141. 31.7

3.3 Transforming wide data into long data

Assume we want to take the data set data_raw_wide and re-create the original long
version. To achieve this we can use tidyr: :pivot_longer (). Again, lets have a look at
the most important arguments:2

e data is the first argument and refers to the name of the data set to be considered

e cols denotes the columns that should be transformed into the longer format

e names_to denotes the column that includes the names of the new columns

e values_to denotes the column that includes the values to be allocated in the newly
created cells

The arguments names_to and values_to are not strictly necessary since they have useful
default values, but its usually nicer to be explicit.

When specifying the argument cols you have several possibilities. The safest variant
is to use the function dplyr::all_of () and pass a character vector with the column
names. You can save a lot of writing by using so called selection helpers, a very useful
tool we will learn about later.

In our case this amounts to:

data_raw_long <- tidyr::pivot_longer(
data_raw_wide,
dplyr::all_of (c("unemp", "gdp", "gini")),
"indicator",
"values")
data_raw_long

2See the online documentation for a more complete description.

Data Science Using R - Spring Semester 2023

https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 5

A tibble: 12 x 4

#Hit country year indicator values
<chr> <int> <chr> <dbl>
1 Germany 2017 unemp 3.75
2 Germany 2017 gdp 53071.

3 Germany 2017 gini 29.4
4 Germany 2018 unemp 3.38
5 Germany 2018 gdp 53487.

6 Germany 2018 gini 29.6
7 Greece 2017 unemp 21.5
8 Greece 2017 gdp 28605.

9 Greece 2017 gini 32.2
10 Greece 2018 unemp 19.3
11 Greece 2018 gdp 29141.

12 Greece 2018 gini 31.7

4 Chaining wrangling tasks using pipes

Pipes are provided via the package magrittr, which is loaded automatically if you
attach packages such as tidyr or dplyr. Pipes are short keywords that facilitate the
development of very readable and transparent data wrangling code.

While there are many different pipes, the one we will use extensively is %>%. It is always
used at the end of a line, and it basically ‘throws’ the result of this line into the next line
of code. In this line, you can refer to the intermediate result via ., or it is used implicitly
as the first argument to the function you use.

In other words, x %>% £(y) (or x %>% £(., y)) is equivalent to £(x, y).

But lets look at an example! Assume we start with this data set:

pipe_data_raw <- data_raw %>%
select(country, year, gdp, unemp)
pipe_data_raw

country year gdp unemp
1: Germany 2017 53071.46 3.75
2: Germany 2018 53486.84 3.38
3: Greece 2017 28604.86 21.49
4: Greece 2018 29141.17 19.29

And what we want is this:

A tibble: 4 x 4

country name t2017° ©2018”
#Hit <chr> <chr> <dbl> <dbl>
1 Germany gdp 53071. 53487 .

Data Science Using R - Spring Semester 2023

https://magrittr.tidyverse.org/reference/index.html
https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 6

2 Germany unemp 3.75 3.38
3 Greece gdp 28605. 29141.
4 Greece unemp 21.5 19.3

We can do this by first making the data longer, and then wider. We could do this
explicitly:

pipe_data_1 <- pivot_longer (
pipe_data_raw,
all_of(c("gdp", "unemp")))

pipe_data_2 <- pivot_wider(
pipe_data_1,
"year",
"value")

But we can also write this code more concisely using the pipe:

pipe_data_final <- pivot_longer (
pipe_data_raw,
all_of(c("gdp", "unemp"))) %>%
pivot_wider(
"year",
"value")

Or, since the pipe carries the intermediate result implicitly as the first argument to the
function on the next line we can space the data = .:

pipe_data_final <- pivot_longer (
pipe_data_raw,
all_of(c("gdp", "unemp"))) %>%
pivot_wider(
"year",
"value")

The %>%-pipe allows you to write very readable code, so make sure you use it often. But
for code development it might be nevertheless helpful to write the intermediate steps
explicitly.

5 Creating or manipulating variables

The function dplyr: :mutate() is used both for manipulating existing columns as well
as creating new columns. In the first case the name of the column that the result of
dplyr::mutate() is written into already exists, in the second case we just use a new
name.

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 7

Consider the following data set with the unemployment rate as an example:

data_unemp

A tibble: 2 x 3

year Germany Greece
<int> <dbl> <dbl>
1 2017 3.75 21.5
2 2018 3.38 19.3

Assume we want to express the percentage values via decimal numbers and, to this end, di-
vide the values in the columns Germany and Greece by 100. We can use dplyr: :mutate ()
to achieve this:

data_unemp %>%
dplyr: :mutate(
Germany/100,
Greece/100

A tibble: 2 x 3

year Germany Greece
<int> <dbl> <dbl>
1 2017 0.0375 0.215
2 2018 0.0338 0.193

But we could use basically the same code to create a new column. Assume, for instance,
we want a new column containing the difference between the unemployment rates:

data_unemp %>%
dplyr: :mutate(
Greece - Germany

)

A tibble: 2 x 4

year Germany Greece Difference
<int> <dbl> <dbl> <dbl>
1 2017 3.75 21.5 17.7
2 2018 3.38 19.3 15.9

The only difference here was that the left-hand-side name of the column to be manipulated
did not exist before!

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 8

6 Filtering rows

The function dplyr::filter() can be used to filter rows according to certain conditions.
The conditions must evaluate for each cell entry to either TRUE or FALSE, and only those
rows for which they evaluate to TRUE remain in the data set. Often, the conditions
are specified via logical operators, which were already covered in the tutorial on vector

types.

As always, the first argument to dplyr::filter() is data, i.e. the data set on which you
want to operate. Then follow an arbitrary number of logical conditions on the different
columns of the data set on question.

Assume we want to take the previously defined data set data_raw_long

data_raw_long

A tibble: 12 x 4

country year indicator values
#i# <chr> <int> <chr> <dbl>
1 Germany 2017 unemp 3.75
2 Germany 2017 gdp 53071.

3 Germany 2017 gini 29.4
4 Germany 2018 unemp 3.38
b5 Germany 2018 gdp 53487 .

6 Germany 2018 gini 29.6
7 Greece 2017 unemp 21.5
8 Greece 2017 gdp 28605.

9 Greece 2017 gini 32.2
10 Greece 2018 unemp 19.3
11 Greece 2018 gdp 29141.

12 Greece 2018 gini 31.7

and only want to keep data on GDP:

data_raw_long %>%
dplyr::filter(indicator=="gdp")

A tibble: 4 x 4
country year indicator values

<chr> <int> <chr> <dbl>
1 Germany 2017 gdp 53071.
2 Germany 2018 gdp 53487 .
3 Greece 2017 gdp 28605.
4 Greece 2018 gdp 29141.

You may also combine more than one condition in one call to dplyr::filter (). If you
also want to filter by values and only keep those rows where the value is below 50.000:

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 9

data_raw_long %>%
dplyr::filter(
indicator=="gdp",
values < 50000)

A tibble: 2 x 4
country year indicator values

<chr> <int> <chr> <dbl>
1 Greece 2017 gdp 28605.
2 Greece 2018 gdp 29141.

7 Selecting columns

When you only want to keep certain columns we speak of selecting (rather than filtering)
columns. This is done - surprise - via the function “dplyr::select()"

There are different ways for selecting columns. In any case, the first argument is, again,
data, i.e. the data set considered. In the present case, we will refer to data_raw:

data_raw

country year unemp gdp gini
1: Germany 2017 3.75 53071.46 29.4
2: Germany 2018 3.38 53486.84 29.6
3: Greece 2017 21.49 28604.86 32.2
4: Greece 2018 19.29 29141.17 31.7

Then we can now select columns using one of the following two options. First, you may
refer to columns via their name:

data_raw %>%
dplyr::select(country, year, unemp)

#i# country year unemp
1: Germany 2017 3.75
2: Germany 2018 3.38
3: Greece 2017 21.49
4: Greece 2018 19.29

But this is often error-prone. Thus, it is usually better to refer to the columns via
selection helpers, which is also the most flexible version. While we will learn about more
selection helpers later, here we will only use dplyr::all_of (), which accepts a character
vector of column names:

Data Science Using R - Spring Semester 2023

https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html
https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 10

data_raw %>%
dplyr: :select(dplyr::all_of (c("country", "year", "gini")))

country year gini
1: Germany 2017 29.4
2: Germany 2018 29.6
3: Greece 2017 32.2
4: Greece 2018 31.7

Caution: Do not forget the c()! Otherwise:

data_raw %>%
dplyr: :select(dplyr::all_of ("country", "year", "gini"))

Error in “dplyr::select()™:

| Problem while evaluating “dplyr::all_of("country", "year", "gini")".
Caused by error in “dplyr::all_of():

! unused arguments ("year", "gini")

It is also possible to define the column vector first:

cols2keep <- c("country", "year", "gini")
data_raw %>%
dplyr::select(dplyr::all_of (cols2keep))

country year gini
1: Germany 2017 29.4
2: Germany 2018 29.6
3: Greece 2017 32.2
4: Greece 2018 31.7

In any case, you can also specify the columns you want to drop. To this end, just add a
- in front of the selection command:

data_raw %>%
dplyr: :select (-unemp, -gdp)

country year gini
1: Germany 2017 29.4
2: Germany 2018 29.6
3: Greece 2017 32.2
4: Greece 2018 31.7

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 11

8 Merging data sets

Often you need to obtain data from different sources. To merge all your data in one
single data set, you need to use one of the *_join() functions of the dplyr-package
These functions all merge two data sets, but the way they do it is different. Below we
illustrate the most common joins (so called mutating joins).3

As a guiding example we use the following two data sets:

First, data on income inequality from the SWIID data base:

swiid_join

country year gini
1: Greece 2015 33.1
2: Greece 2017 32.2

Second, data on GDP per capita from the World Bank:

gdp_join

#i# country year gdp
1: Germany 2017 53071.46
2: Germany 2018 53486.84
3: Greece 2017 28604.86
4: Greece 2018 29141.17

We will consider the behavior of the following four functions:

o dplyr::left_join()
e dplyr::right_join()
e dplyr::full_join()
e dplyr::inner_join(Q)

All of them accept the following arguments:

e x and y: the two data sets to be merged
e Dby: a vector or a named vector indicating on which columns the data sets should
be merged

Its easier to understand their behavior if you contrast them directly with each other.
First, dplyr::left_join() joins the data sets on those columns mentioned in by, but
only keeps those rows for which x contains an observation:

3The other join types are filtering joins and nest joins. You find more information in the web, and more
details on the underlying theory in chapter 13 of R4DS.

Data Science Using R - Spring Semester 2023

https://dplyr.tidyverse.org/reference/mutate-joins.html
https://fsolt.org/swiid/
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/nest_join.html
https://r4ds.had.co.nz/relational-data.html
https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 12

dplyr::left_join(gdp_join, swiid_join, c("country", "year"))

Hi#t country year gdp gini
1: Germany 2017 53071.46 NA
2: Germany 2018 53486.84 NA
3: Greece 2017 28604.86 32.2
4: Greece 2018 29141.17 NA

This might introduce NAs into the columns of y, but not of x. It is the other way
around for dplyr::right_join(): it only keeps those rows for which y contains an
observation:

dplyr::right_join(gdp_join, swiid_join, c("country", "year"))
#Hit country year gdp gini
1: Greece 2017 28604.86 32.2
2: Greece 2015 NA 33.1

dplyr: :inner_join() is the most restrictive option, keeping only those rows for which
both x and y contain an observation (i.e. it never introduces NAs):

dplyr::inner_join(gdp_join, swiid_join, c("country", "year"))

Hi#t country year gdp gini
1: Greece 2017 28604.86 32.2

Finally, dplyr: :full_join() contains all rows that occur at least in x or y, i.e. it might
introduce NAs in both the columns of x and y:

dplyr::full_join(gdp_join, swiid_join, c("country", "year"))
country year gdp gini
Germany 2017 53071.46 NA

1:
2: Germany 2018 53486.84 NA
3: Greece 2017 28604.86 32.2
4: Greece 2018 29141.17 NA
5: Greece 2015 NA 33.1

Two final remarks: first, the types of the columns on which you merge the data sets must
be equal, otherwise R throws an error:

swiid_join <- dplyr::mutate(swiid_join, as.character(year))
dplyr::left_join(gdp_join, swiid_join, c("country", "year"))

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 13

Error in “dplyr::left_join() ™:

! Can't join “x$year” with “y$year” due to incompatible types.
i “x$year” is a <integer>.

i “y$year” is a <character>.

Just enforce the correct data type before merging:

swiid_join %>%

dplyr: :mutate(as.integer(year)) %>%
dplyr::left_join(gdp_join, . c("country", "year"))
country year gdp gini

1: Germany 2017 53071.46 NA
2: Germany 2018 53486.84 NA
3: Greece 2017 28604.86 32.2
4: Greece 2018 29141.17 NA

Second, you can also merge on columns with different names by passing named vectors
to by:

swiid_join <- swiid_join %>%
mutate(as.double(year)) %>%
select(-year)

swiid_join

country gini Year
1: Greece 33.1 2015
2: Greece 32.2 2017

Then this does not work any more:

dplyr::left_join(
gdp_join, swiid_join,
c("country", "year"))

Error in “dplyr::left_join()™:
! Join columns in "y must be present in the data.
x Problem with “year’.

But the named vector fixes it:

dplyr::left_join(
gdp_join, swiid_join,
c("country", "year"="Year"))

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I

14

country year gdp gini
1: Germany 2017 53071.46 NA
2: Germany 2018 53486.84 NA
3: Greece 2017 28604.86 32.2
4: Greece 2018 29141.17 NA

9 Grouping and summarising data

The final challenge we consider involves the application of two functions (at least in most

cases): dplyr::group_by() and dplyr: :summarize().

dplyr: :group_by() is usually used within pipes and groups a data set according to an
arbitrary number of variables, each of which must refer to one (and only one) column. It

produces a grouped data set:

data_raw_grouped <- data_raw %>%
dplyr: :group_by(country)
data_raw_grouped

A tibble: 4 x b
Groups: country [2]
country year unemp gdp

gini

<chr> <int> <dbl> <dbl> <dbl>

1 Germany 2017 3.75 53071.
2 Germany 2018 3.38 53487.
3 Greece 2017 21.5 28605.
4 Greece 2018 19.3 29141.

29.4
29.6
32.2
31.7

As you can see, the data set is now grouped by the variable country. We can specify the
grouping variables the same way we selected columns in the context of dplyr: :select()

(see above).

Grouped data sets are usually not interesting in itself. You can ungroup them via

dplyr: :ungroup():
data_raw_grouped %>%

dplyr: :ungroup()

A tibble: 4 x 5
#it country year unemp gdp

gini

<chr> <int> <dbl> <dbl> <dbl>

1 Germany 2017 3.75 53071.
2 Germany 2018 3.38 53487.
3 Greece 2017 21.5 28605.
4 Greece 2018 19.3 29141.

29.4
29.6
32.2
31.7

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 15

They are most useful if used in conjunction with dplyr: : summarise (), which summarizes
variables. While it can be used without dplyr: :group_by(), it is most useful if it is
applied to grouped data sets: then it computes summary statistics for each group.

data_raw %>%
summarise (
mean (gdp)

#i#t avg_gdp
1 41076.08

data_raw_grouped %>%
summarise (
mean (gdp)

A tibble: 2 x 2
#Hit country avg_gdp
<chr> <dbl>
1 Germany 53279.
2 Greece 28873.

You can also summarized more than one column:

data_raw_grouped %>%
summarise (
mean (gdp) ,
median (unemp)

A tibble: 2 x 3
country avg_gdp median_unemp

<chr> <dbl> <dbl>
1 Germany 53279. 3.57
2 Greece 28873. 20.4

Note that dplyr::summarise() drops all columns that it is not asked to compute
summary statistics for, except potential grouping variables.

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I 16

10 A final example

Thanks to the pipes it is easy to chain the many different wrangling steps into one
function call. But in practice it is very important that you (1) inspect your raw data
very clearly, (2) write down the desired end product, and then (3) think about the single
steps required to reach the desired outcome. Each step should address one (and only
one) wrangling challenge.

To illustrate this, assume we start start with this raw data:

str(data_final_expl)

Classes 'data.table' and 'data.frame': 84 obs. of 4 variables:

$ country: chr "Austria" "Austria" "Austria" "Austria"

§ year : int 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 ...
¢ unemp : num 4.69 4.01 4.85 4.78 5.83 ...

¢ gdp : num 46470 46879 47419 47633 48633 ...

- attr(*, ".internal.selfref")=<externalptr>

What we want to do is to compute the difference in the country averages of the variables
for the time periods 2005-2007 and 2010-2013. This would look like this:*

To achieve this, we need to chain a number of wrangling challenges introduced above:

data_final_expl %>%
dplyr: :mutate(
ifelse(
year %in% 2005:2007,
"Early",
ifelse(
year %inj% 2010:2013,
"Late",
NA))
) %>h
dplyr::filter(!is.na(period)) %>%
group_by(country, period) %>%

summarise (
mean (unemp) ,
mean (gdp) ,
"drop"
) h>%

tidyr: :pivot_longer(
dplyr::all_of(c("avg_unemp", "avg_gdp")),
"indicator",
"values") %>%

“We have not yet covered the function ifelse(). It contains a logical test as a first argument, and
then two further arguments: one return value for the case in which the test returns TRUE, and one for
which the test returns FALSE.

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

Lecture notes: Data wrangling I

17

##
##
##
##
#it
##
#it

tidyr: :pivot_wider(
"period",
"values") %>%
dplyr: :mutate(
Late - Early
) h>%
dplyr::select(-Early, -Late) %>%
tidyr: :pivot_wider(
"indicator",
"Difference")

A tibble: 4 x 3
country avg_unemp avg_gdp
<chr> <dbl> <dbl>
1 Austria -0.348 1899.
2 Germany -4.18 3570.
3 Greece 11.5 -6234.
4 Italy 3.02 -3014.

If you have trouble understanding the many steps, redo the computations yourself and
always check what happens in the single steps. It is not a good idea to write such a long
chain in one working step, but rather to make sure that you always understand what

happens in any single step, and then expand the chain one by one.

Data Science Using R - Spring Semester 2023

https://euf-datascience-spring23.netlify.app/

	Packages and data used
	General remarks
	Reshaping data from long to wide format
	Wide and long format: definition
	Transforming long data into wide data
	Transforming wide data into long data

	Chaining wrangling tasks using pipes
	Creating or manipulating variables
	Filtering rows
	Selecting columns
	Merging data sets
	Grouping and summarising data
	A final example

